

Circuit Miniaturization Using Nanoparticle Conductors and Embedded Components

C. Paul Christensen

Potomac Photonics, Inc.

4445 Nicole Drive Lanham, MD 20706 (301) 459-3031

Component miniaturization

Sub-millimeter passives

2x2 mm² Accelerometer

ZigBee® System-on-Chip CC2531

6x6 mm² RX/TX/MCU

2x2 mm² Op Amps

MEMS Microphones

- New miniature components offer opportunities for system miniaturization
- Need new interconnect and power concepts

Development Goals

- Miniature systems using packaged components
- 3D construction with flexible form factor
- Low-cost assembly
- Green, lead-free processes
- Minimize capital equipment costs
- Small/Large batch compatibility
- Easy design change
- Modular testability

Approach

- 1. Fabricate fine feature interconnects on thin substrates
 - Nanoparticale silver conductors
 - Laser direct-write processes
- 2. Attach packaged components
- 3. Encapsulate components
- 4. Stack modules

Embedded 3D Fabrication

- Many different/similar techniques
 - GE (1994 patent), Freescale, Verdant Electronics, Imbera, Ga Tech, Fraunhofer,etc.
- Well known benefits
 - High component density
 - Eliminate solder connections
 - Simplify supply chain
- Potomac's contribution: Simplicity

372

- 1. Pattern substrate and fill with nanoparticle silver
- 2. Apply and pattern cover layer.
- 3. Attach components
- 4. Encapsulate components
- 5. Invert. Apply cover layer to backside and pattern

- 6. Attach components (optional)
- 7. Drill and fill interconnection vias. Excise

POTOMA **Conductor fabrication** Pulsed **UV** laser **BNS** Ш Ŭ. **1** a în air: 1. 1st Squeegee Laser ablate channels Fill 2. Low T bake 1.0.0 0 0 DX15B 0 0 0 - 23 0 0 0 0 INS I 2752 COLUMN TWO IS NOT 2012 4. Residue 3. 2nd Squeegee removal Fill 5. Full oven cure Conductor resistivity ~ 3X -1863 0 0 <u>(1</u>) 5X bulk Ag **Finished circuit** 7

Embedded Nanoparticle Conductors

- Nanoparticle conductor advantages:
 - Eliminate photolithography
 - Conductor width limited only by laser focal spot size.
 - <10 micron width/spacing demonstrated
 - Controllable aspect ratio
 - Additive, green process

New Routing Options Allow Layer Reduction

- Narrow linewidths and embedded geometry allows more routing between pads.
 - Reduce via count
 - Reduce layer count
 - Simplify signal leadout from arrays
 - Route under surface mount passives

POTOMAC

Applicable to a Variety of Substrates

Embedded conductor pattern

Substrates

- Organic
 - Polyimide
 - ABF
 - EPTFE
 - Liquid crystal polymers
- Inorganic
 - Alumina

Examples: Polyimide substrate

Battery-powered LED flasher

← _____ 35 mm _____

Strain gauge interface

Single Layer Circuits !

Examples: Alternative Substrates

Working circuits

Pads and 15 micron traces

- Vacuum/pressure encapsulation with thermal cure
 - Eliminate voids
 - Flat outer surfaces
- Encapsulant material requirements:
 - Compatible TCE
 - Adhesion to coverlay and components
 - Suitable flow and curing properties

Connection to and between modules

- Conductive vias for interconnection of modules
 - Laser drilled
 - Epoxy filled
 - Many other options

Example: Amplifier module fabrication

Layout

Schematic

All CAD/CAM processes are driven by layout

Conductors and Coverlay

Laser pattern and fill frontside and backside conductors

Apply, laser image and develop (aqueous) frontside coverlay

Dispense adhesive and populate

Dispense epoxy using locations derived from layout

Pick and place components using locations derived from layout

Must have high accuracy and repeatability

Example: Amplifier module fabrication

Encapsulation, Through Vias, and Excision

Encapsulated circuit with patterned backside coverlay

Completed modules

Example: Amplifier module fabrication

Electrical Test

Several intermediate testing opportunities during module production

- After interconnect fab
- After component attach
- After encapsulation
- Before stacking

10X Amp Gain (after component attach)

Amplified microphone output (after module completion)

Feasibility study: Wireless sensor platform

Support by National Science Foundation

- Potomac transmitter/receiver using wireless chipset and rechargeable thin film battery
 - Sugar cube size
 - Can attach sensors

Wireless sensor requirements

- Every sensor must have:
 - 1. Sensing component
 - 2. Signal conditioning
 - 3. Communication
 - 4. Power source
 - 5. Enclosure

Infrastructure platform

- Infrastructure platform determines size and cost of sensor node
- Miniaturization requires high energy density battery or high efficiency energy scavenging

- New RuOx chemistry gives >10 mA-hr/cm2
- < 0.3 mm thickness
- 10 x 10 mm² footprint

NSF SBIR Wireless sensor platform mockup

Size Reduction + Freedom of Form Factor

- Volume reduction through high density packaging and fine line interconnects.
- Laser based CAD/CAM process allow wide range of shapes

Communication Module

Wireless SoC with passives

Encapsulated module with exposed chip antenna and MEMS microphone **Example: Wireless sensor mockup**

Complete wireless sensor

Sensor node cost estimate

- Component costs dominate
- Materials costs negligible

Thermal cycling tests

40 element Daisy Chains

Capital Equipment Required

Paste fill & clean station

UV laser system

Encapsulation mold

Pick and Place

POTOMAC

Epoxy Dispenser

Capital Equipment <u>NOT</u> required

Resist exposure system

Etching/Plating tanks

It's a work in progress, but....

Development Goal	No	Yes
High Miniaturization		 ✓
Flexible, 3D form factors		\checkmark
Low-cost assembly		\checkmark
Green fabrication processes		\checkmark
Modular testability		\checkmark
Easy design change		\checkmark
Small/large batch manufacturing		✓
Minimal capital equipment		\checkmark

More information and updates

www.potomacmeso.com

This work was partially supported by NSF SBIR Phase I Grant #IIP-0945277