

Miniature MEMS Interface Circuits Using Nanoparticle Conductors and Embedded Components

C. Paul Christensen

Potomac MesoSystems

231 Hidden Valley Road Tracys Landing, MD 20779 240-375-7480

MEMS Sensor systems

MEMS System Integration

A. MIniature size with flexible form factor

- i. Smallest component sizes
- ii. Fine-feature interconnect
- iii. 3D construction
- **B.** Low-cost assembly
 - i. Minimize capital/labor costs
 - ii. Low materials costs
 - iii. Minimal waste stream
- C. Quick-turn with small/large batch compatibility
 - i. Packaged components
 - ii. CAD/CAM processes

Conventional PCB Technology

- Highly-Developed, proven technology
- Many competent vendors

But...

There's room for improvement

- Feature sizes < 50 microns are challenging
- Basically a 2D technology
- Lots of capital equipment, floor space, industrial waste

Embedded 3D Fabrication

- Many different/similar techniques
 - GE (1994 patent), Freescale, Verdant Electronics, Imbera, Ga Tech, Fraunhofer,etc.
- Well known benefits
 - High component density
 - Eliminate solder connections
 - Simplify supply chain
- Potomac's contribution: Simplicity

Approach

- **1.** Fabricate fine feature interconnects on thin substrates
 - Nanoparticale silver conductors
 - Laser direct-write processes
- 2. Attach packaged components
- 3. Encapsulate components
- 4. Stack modules

Nano-Ag conductor fabrication

Finished circuit

Embedded Nanoparticle Conductors

- Nanoparticle conductor advantages:
 - Eliminate photolithography
 - Conductor width limited only by laser focal spot size.
 - <10 micron trace/space demonstrated
 - Controllable aspect ratio
 - Additive, green process

Silver aspect ratio compensates for higher resistivity

Narrow traces reduce layer count

15 micron trace/space

100 micron trace/space

Examples: Polyimide substrate

Battery-powered LED flasher

← _____ 35 mm _____

Strain gauge interface

Single Layer Circuits !

Examples: Alternative Substrates

Working circuits

Pads and 15 micron traces

—— Alumina——→

Stretchable Interconnects

System example: NSF Wireless sensor platform mockup

Size Reduction + Freedom of Form Factor

- Volume reduction through high density packaging and fine line interconnects.
- Laser based CAD/CAM process allow wide range of shapes

Miniature systems based on additive processes

- Process temperatures < 200 C
- Negligible waste stream

Example: Amplifier module fabrication

Layout

Schematic

10 mm

All CAD/CAM processes are driven by layout

Conductors and Coverlay

Laser pattern and fill frontside and backside conductors

Apply, laser image and develop (aqueous) frontside coverlay

Dispense adhesive and populate

Dispense epoxy using locations derived from layout

Pick and place components using locations derived from layout

Must have high accuracy and repeatability

- Vacuum/pressure encapsulation with thermal cure
 - Eliminate voids
 - Flat outer surfaces
- Encapsulant material requirements:
 - Compatible TCE
 - Adhesion to coverlay and components
 - Suitable flow and curing properties

Connection to and between modules

- Conductive vias for interconnection of modules
 - Laser drilled
 - Epoxy filled
 - Many other options

Example: Amplifier module fabrication

Encapsulation, Vertical Vias, Backside Components

Encapsulated circuit with patterned backside coverlay

Completed modules

Communication Module

Wireless SoC with passives

Encapsulated module with exposed chip antenna and MEMS microphone

FlexEl, LLC Advanced Thin Film Battery

ΡΟΤΟΜΛC

MESOSYSTEMS

- New RuOx chemistry gives >10 mA-hr/cm2
- < 0.3 mm thickness
- 10 x 10 mm² footprint

Example: Wireless sensor mockup

Complete wireless sensor

Electrical Test

Several intermediate testing opportunities during module production

- After interconnect fab
- After component attach
- After encapsulation
- After stacking

10X Amp Gain (after component attach)

Amplified microphone output (after module completion)

Capital Equipment Required

Integrated Laser/PnP/Dispense

Paste fill & clean station

Encapsulation mold

Capital Equipment <u>NOT</u> required

Resist exposure system

Etching/Plating tanks

Lamination Press

Scaling to higher volume

UV laser system

Paste fill & clean station

Encapsulation mold

Epoxy Dispenser

Pick and Place

Module cost estimate

- Component costs dominate
- Materials costs negligible

Thermal cycling tests

40 element Daisy Chains

It's a work in progress, but....

Development Goal	No	Yes
High Miniaturization		~
Flexible, 3D form factors		\checkmark
Low-cost assembly		\checkmark
Green fabrication processes		\checkmark
Small/large batch manufacturing		\checkmark
Minimal capital equipment		\checkmark

Collaboration and evaluation

This work is partially supported by NSF SBIR Phase II Grant #IIP-1058133

www.potomacmeso.com

www.potomac-laser.com